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Gate Delay, and the S-R Flip-Flop 
(Revised 12 April 2004) 

 
Representing Truth Values in Electronic Equipment 
 
 We have seen how numbers can be represented in a computer.  These 
representations are imperfect models of the objects they represent.  For instance, the data 
type "real" in a computer is only a finite subset of the set R of all real numbers.  We now 
look at an entirely different representation of mathematical logic in a computer: 
representation of propositional logic in the electronic circuits of the computer itself. 
 
 In an electronic circuit, the truth values T and F are represented by ranges of 
voltages that may appear on a signal line or wire.  The ranges chosen depend on the types 
of electronic components used.  If the voltage used to represent T is larger (more 
positive) than the voltage for F, the circuit said to use positive logic.  If the voltage used 
to represent F is larger, the circuit is said to use negative logic. 
 
 One very common convention using positive logic is: 
  T is represented by the range +2.4 volts to +5.0 volts 
  F is represented by the range  0.0 volts to +0.8 volts. 
These ranges are known as TTL (transistor-transistor logic) levels and are shown in 
Figure 1.  Circuits using this convention use a single 5-volt power supply, so voltages 
above 5 and below 0 volts are irrelevant.  Note, however, that there is a 1.6-volt wide 
"buffer zone" between T and F.  This is required because physical quantities such as 
voltage can never be measured perfectly.  If there were no buffer zone and a voltage were 
close to the T-F boundary, it might be impossible to tell whether it represented T or F. 
              

 
 

Figure 1. TTL Logic Levels 
 
 In circuit design, the truth values T and F are often called 1 and 0, or "high" and 
"low", the latter terms corresponding to the voltage levels representing the truth values. 
 
Gates and Gate Delay 
 
 A logical connective, such as "not", "and", or "or" is implemented by an 
electronic circuit called a gate.  A gate that represents "not", and has one input and one 
output, is called an inverter.   
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Figure 2 shows the performance of a TTL inverter. If the input p to the inverter is 
T, the output q is F.  If p changes from T to F, the output q must change from F to T.  But 
since no physical quantity can change instantaneously, the output moves gradually out of 
the F range, through the buffer zone and into the T range.  During this period, called the 
gate delay, the output of the gate is wrong or indeterminate.  The circuit designer must be 
careful not to use the output of a gate until the gate delay has elapsed. 
 

 
 

Figure 2. Actual Performance of an Inverter Circuit 
 
 The speed of a computer is limited by the gate delays in its circuits.  In early 
vacuum tube computers, gate delays were measured in microseconds.  Delays of 10 
nanoseconds were achieved by the early 1970's.  The fastest computers today [1991] have 
delays measured in picoseconds. 
 
Feedback and Memory Circuits 
 

Up to this point, we have interconnected gates only to form circuits for logical 
expressions.  In the circuits we have drawn, the inputs are on the left and the output is on 
the right, and signal flow is always from left to right.  To make more sophisticated 
circuits, we can use feedback: the output of a circuit is "fed back" into the input.  In a 
circuit with feedback, there is a loop in the signal flow path. 
 
 The simplest useful circuit with feedback is the set-reset flip-flop (or S-R flip-
flop) shown in Figure 3. In this circuit, the output of each gate is fed back to one input of 
the other gate.  The loop in the signal path is a figure-8.  
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Figure 3. The S-R Flip-Flop 
 
To analyze this circuit, we must first write some equations describing it.  There is 

one equation for each gate.  The equations are: 
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We may look at this as a system of two equations in four unknowns.  From our 
experience with algebraic equations, we may expect that there are several solutions.  This 
is indeed the case.  To find them, we can list all possible combinations of truth-values for 
s, r, q, and q', and compute the truth-values of  

( )'qsq ∧¬⇔  
and  

( )qrq ∧⇔'  
for each combination.  The computations are left to you as an exercise.  The solutions are 
shown in the following table: 
 

Case s r q q' 
(a) T T T F 
(b) T T F T 
(c) F T T F 
(d) T F F T 
(e) F F T T 

 
 

We can see from this table that if s or r is false (cases c, d, and e), the inputs s and 
r determine the outputs q and q'. But if s and r are both true (cases a and b), the circuit 
can be in either of two states.  The circuit is stable in both of the states (a) and (b): the 
outputs will not change unless one of the inputs changes.  Thus, when the inputs are both 
T, the circuit is a one-bit memory.  It "remembers" what state it has been in. 
 
 The use of the flip-flop is illustrated in Figure 4.  The figure plots the truth-values 
of s, r, q, and q' as functions of time.  This type of diagram is called a timing diagram. At 
time T1, the circuit is in state (b).  It stays in this state until the input s changes to F.  
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When s changes to F, the output of the top gate in Figure 3 changes to T, which causes 
the output of the lower gate to change to F.  The circuit changes to state (c) at time T2.  
Now when the input s is returned to the T state, neither gate changes its output.  The 
circuit changes to state (a) and remains in this state. 
 

 
 

Figure 4. Setting and Resetting a Flip-Flop 
 
 The change in output state was caused by the pulse to F on the s input.  A pulse is 
a short change in state of a signal line, after which the line returns to the previous state.  
The pulse on the s input is said to have set the q output to T.  Similarly, a pulse on the r 
input will reset the q output to F.  Throughout the sequence of events in Figure 4, the q' 
output is equal to the negation of the q output. 
 
 Notice that in the events of Figure 4, solution (e) of the equations plays no role.  
In fact, in state (e) it is not true that q' is the negation of q.  This state is avoided in actual 
applications. 
 
 We have now seen how propositional logic contributes to the design of the two 
fundamental parts of a computer – the processor and the memory.  The processor can be 
built of logic circuits, with the design based on formulas of Boolean algebra.  Circuits 
with feedback can function as the computer's memory.  Thus, it is possible in principle to 
build an entire computer out of NAND gates. 
 


