
Security Issues in Software Design

"All data is evil, until proven otherwise."
 - Michael Howard, Microsoft

 When most people think about computer security, they think about physical security and
cryptography. Physical security involves controlling access to computer assets and protecting
them from physical attack, and cryptography is used to ensure that messages transmitted between
computers are not intercepted or altered. For example, when you log into WebTycho, your
password is encrypted by your browser and decrypted by the WebTycho server.

 But errors in the design of software can also create security vulnerabilities. We have all
heard about all the "security updates" that Microsoft has issued for its Windows operating
systems over the past few years. A vulnerability in a software product can subject the computer
on which it is running to various attacks. Attacks may be grouped in the following categories:

• Spoofing: An attacker pretends that he is someone else, perhaps in order to inflict some
damage on the person or organization impersonated.

• Tampering: An attacker is able to modify data or program behavior.
• Repudiation: An attacker, who has previously taken some action, is able to deny that he

took it.
• Information Disclosure: An attacker is able to obtain access to information that he is not

allowed to have.
• Denial of Service: An attacker prevents the system attacked from providing services to

its legitimate users. The victim may become bogged down in fake workload, or even
shut down completely.

• Elevation of Privilege: An attacker, who has entered the system at a low privilege level
(such as a user), acquires higher privileges (such as those of an administrator).

These six categories are encapsulated in the acronym STRIDE.

 One of the goals of this class is to enhance your understanding of these ideas. It will be
useful to have some common terminology:

• A vulnerability is a defect in the design of a software product that makes it possible for
an attacker to carry out an attack on a system.

• A threat is a possible way to attack a software product
• An exploit is a specific technique devised by an attacker to take advantage of a

vulnerability. It is a realization of a threat.

Vulnerabilities may be found in operating systems, library subprograms used to build
applications, widely used applications such as browsers and e-mail programs, and third-party
applications. Because of recent progress in fixing vulnerabilities in operating systems, most
current attacks target application programs.

The largest single cause of security vulnerabilities in software is trust in data. The
program (or component of a program) expects a certain kind of data, assumes that the incoming
data is of that certain kind, and fails to examine the data to verify that it is what is expected. The
program may then fail if accidentally or intentionally malformed data is received. In short, the
program fails to do an adequate job of input data validation. In this course, we will have
several occasions to consider input data validation and some consequences of absent or
inadequate input data validation..

Acknowledgement: This note is based in part on material presented at the Microsoft Academic
Days Conference on Trustworthy Computing, April 7-9 2006.

Suggested readings:

19 Deadly Sins of Software Security. Michael Howard, David LeBlanc, John Viega. Microsoft
Press.

Threat Modeling. Frank Swiderski, Window Snyder. Microsoft Press.

