
Rev. 11 (4/29/2015) Page 1

A Short Introduction to Functions

for use in

CMIS 102, Introduction to Problem Solving and Algorithm Design

A. What is a function?

You can think of a function as a black box that accepts some data in an inbox, performs

some processing using that data, and reports a result through an outbox. The items going

into the inbox are parameters. The result placed in the outbox is called the return value.

Figure 1 illustrates a function with three parameters.

A function has absolutely no information about the environment in which it is expected to

operate. You can think of a function as a contractor providing some service, operating

out of a storefront. The contractor has no idea who his customers will be, what

parameters they will bring, or what they will do with the results.

Functions are of two types: library or built-in functions, that are provided with a

programming language development system; and user-written functions.

When a function is used in a program, it is the responsibility of the client program to

provide the parameter values by placing them in the slots of the inbox, and then push the

GO button to start the function's process. It is also the responsibility of the client to grab

the result from the outbox and do something with it. Doing these things is called calling

or invoking the function.

Process

Inbox slots

Outbox

Figure 1. A function with three parameters

GO

Rev. 11 (4/29/2015) Page 2

In order to use a function in a program, there are certain things you have to know about

it:

 The function's name;

 The number of parameters (that is, the number of slots in the inbox);

 The data type required for each of the parameters;

 The data type of the result; and of course:

 What the function does.

B. Some library functions

All program development systems provide large inventories of library functions. The

details vary widely from one language to another. Table 1 shows the five functions that

are used in the examples in the Pseudocode Demo package. Table 2 lists a few typical

functions that do useful things with Strings. We will not need to use any of the functions

in Table 2 in this course. This table is just to provide you some insight into what is out

there in the world of library functions.

Table 1. Information the Functions used in the Pseudocode Demos

Name Number of

Parameters

Parameter

Data

Types(s)

Result

Data

Type

What it does

Sqrt 1 Float Float Computes a square root

isValidInteger 1 String Boolean Determines if the

parameter represents an

integer value

isValidFloat 1 String Boolean Determines if the

parameter represents a

float value

getIntegerValue 1 String Integer Returns the integer

value represented

getFloatValue 1 String Float Returns the float value

represented.

Table 2. A Few Typical String-oriented Functions

Name Number of

Parameters

Parameter

Data

Types(s)

Result

Data

Type

What it does

length 1 String Integer Returns the number

of characters in the

string.

getCharacterAt 2 String s,

Integer n

Character Returns the character

in position n of

string s.

Rev. 11 (4/29/2015) Page 3

findFirstPosition 2 String s,

Character c

Integer Returns the position

of the first occurance

of character c in

string s, or -1 if the

character c does not

occur in string s.

printf and scanf are also library functions, but they have unusual properties

specifically for output and input operations, and are unique to the C language. We will

not consider printf and scanf in this note.

Some library functions will fail (and the client program will be terminated) if the input to

the function does not make sense:

 Sqrt will fail if the input is a negative number. For example, Sqrt(-37.2)

will fail. You can’t take a square root of a negative number!

 getIntegerValue will fail if the input is not a valid representation of an

integer value. For example, getIntegerValue("3.1567 ") and

getIntegerValue("Hello there! ") will fail. Similarly with

getFloatValue.

 getCharacterAt will fail if there is no character at the specified position. For

example, getCharacterAt("qwert", -3) and

getCharacterAt("ABCDE", 37) will fail.

When working with a function that can fail, the prudent programmer would first do a test

on the intended input values to make sure that a failure won’t happen.

C. Examples of User-Written Functions

In the Pseudocode Demo package, you will find two examples that contain user-written

functions: Function Example A and Function Example B. We will discuss the function in

Function Example A in some detail, then briefly discuss the function in Function

Example B.

1. The Larger function

Suppose you have two float variables m and n, and want to set t to the larger of the

values of m and n. You would have to write something like this:
If (m >= n)

 t = m

Else

 t = n

Endif

That is not all that awkward, but if you were writing code to do some complex financial

computation (some sort of taxes, maybe) and had to write variations on this many times,

Rev. 11 (4/29/2015) Page 4

it would get rather tiresome. Here is a better way: write a function Larger that will

simplify your task.

Define Function Larger(Float A, Float B) Returns Float

 If (A >= B)

 return A

 Else

 return B

 Endif

End Function

The first line of this definition provides all of the information a client needs in order to

use the function. The name of the function is Larger. It takes two parameters (there

are two slots in its inbox). Both parameters are of type Float. The result returned to the

client is of type Float. This first line is the header or prototype of the function. The

following lines, which are the body of the function, define what the function does and

how it does it.

Now suppose that you have to find the largest of three numbers X, Y, and Z. You would

do this in two steps. First, find the larger of X and Y; store it in a variable you might call

Temp. Then, find the larger of Temp and Y.

At this point, you should go to the Pseudocode Demonstration web site. Then start the

demonstration program by clicking on the yellow button. Select Function Example A

from the dropdown list in the upper left corner, then select Initialize. Figure 2 shows

what you will see.

Read through the pseudocode in the left panel. (It will be much clearer on the web site

than in this document.) Now look at the variables in the right panel. There are two

groups. The first group consists of the five variables declared in the main program. The

second group consists of the two variables A and B of the Larger function. These are

the formal parameters; they are the two slots in Larger's inbox. This function does not

have any more variables, but most functions will have additional variables.

Now single-step through the program, entering values of your choice for X, Y and Z.

Watch for the following key events associated to the two invocations of the function

Larger:

 The values of X and Y are copied to A and B.

 The function does its work.

 The result from the function is picked up from the function's outbox by the main

program, and placed in Temp. (The outbox itself is not visible.)

 The values of Temp and Z are copied to A and B.

 The function does its work.

 The result from the function is picked up from the function's outbox by the main

program, and placed in Biggest.

http://j2hirschfelder.home.comcast.net/CMIS102Items/PseudocodeDemo.html

Rev. 11 (4/29/2015) Page 5

In the first use of Larger, the values of the variables X and Y are the actual parameters

sent to the function. In the second use of Larger, the actual parameters are the values

of Temp and Y.

Things to remember:

 Actual parameters are values. They are sent to the function and placed in the

inbox.

 Formal parameters are variables in the function. They are the slots of the inbox.

 The client module has no access to any of the variables of the function, and the

function has no access to any of the variables of the client. All communication

takes place through the function's inbox and outbox.

If you writing a program that consists of a main module and one or more functions, it is

highly recommended that you never use the same variable name in two different

program units. Doing so is not illegal (because the main module and each function have

their own namespaces), but it significantly increases your chances of making mistakes.

Figure 2. Function Example A in the Pseudocode Demonstration

Rev. 11 (4/29/2015) Page 6

2. The Diag function

Function Example B in the Pseudocode Demonstration program is similar to Function

Example A but is a bit more involved. Before working through the example, read the

general information about this example. There is one function, Diag, that finds the

length of the hypotenuse of a right triangle, given the lengths of the sides. The Diag

function in turn uses the library function Sqrt. Then start Function Example B. As

before, watch how control flows from the main module to the Diag function and back

each time the function is called.

D. Writing and Using Your Own Function: A Cookbook Approach

To design a function, you first have to answer a few questions:

How many slots does the function's Inbox have?

For each slot in the Inbox, what is the data type of the data you expect to find

there?

What is the data type of the data to be returned to the client?

Then, you have to choose some names:

Choose a name for the function

Choose a name for each slot in the Inbox. (These names are called formal

parameters.)

Your next step is to build a framework for the function. You do this by filling in a

standard template. Here is the template for a function of two variables. If there are only

one, or more than two, Inbox slots, modify the template accordingly.

Define Function FunctionName (type1 parameterName1, type2
 parameterName2) Returns returnType
 Pseudocode for accomplishing the function's task
 Return (Value to be placed in Outbox)
End Function Definition

You should copy the blue text (including the parentheses and comma) exactly, then

replace each red item with appropriate names or code. Note that each of type1, type2, …

returnType must be a recognized data type, such as Integer or Float or String.

Now let’s use this procedure write a function to find the length of the hypotenuse of a

triangle. This is, of course, exactly the Diag function that you saw in Function Example

B, so you have already seen the end product of this activity. We begin by answering the

basic questions, then choose names.

How many slots does the function's Inbox have? Two – the lengths of the two

sides of the triangle.

http://j2hirschfelder.home.comcast.net/CMIS102Items/RoofAreaFunctionExample.html

Rev. 11 (4/29/2015) Page 7

For each slot in the Inbox, what is the data type of the data you expect to find

there? Float – because the lengths are measurements

What is the data type of the data to be returned to the client? Float

Then, you have to choose some names:

Choose a name for the function: Hypoteneuse

Choose appropriate, valid variable name for each slot in the Inbox: Width,

Length

Now we can copy the template, and replace most of the red items using the answers we

chose above; replacements are in green:

Define Function Hypoteneuse (Float Width, Float Length) Returns
Float
 Pseudocode for accomplishing the function's task]
 Return (Value to be placed in Outbox])
End Function Definition

Now we have to consider what additional variables we will need. We will only need one,

to hold the calculated hypoteneuse length. It will be of type Float. Lets call it Hypo. We

declare this variable, then add the formula for the length of the hypoteneuse of a triangle:

Define Function Hypoteneuse (Float Width, Float Length) Returns
Float
 Declare Hypo as Float
 Set Hypo = Sqrt(Length*Length + Width*Width)
 Return (Hypo)
End Function Definition

And there you have it! Now in a program, you can write things like

 Declare L, W as Float
Write "Enter the length and width of your triangle: "
Input L
Input W
Write "The length of your hypotenuse is " + Hypoteneuse(L, R)

Rev. 11 (4/29/2015) Page 8

E. A Comparison to Computer Networks

You are sitting at your computer and decide to visit two web sites. At each site, you fill

in a form indicating what you want done or what information you want, and each site

responds with some information. Information is sent to a web site, and requested

information is returned. So we have the following data flow:

The three actors here – your browser, Web Site A, and Web Site B – run on three

different computers. They communicate with one another only through the network, as

shown in the arrows. None of the computers has any components in common with either

of the others. In particular, they do not share any memory!

Now consider a program that needs to use two functions, Function A and Function B. We

have this diagram:

This is the same diagram! This time, the three actors run on the same computer, but they

still communicate with one another only through the function call mechanism. And they

do not share memory! Each actor has its own set of variables, which it does not share

with either of the others.

So when writing a program and some functions, you should imagine that you are writing

programs to be run on different computers. Nothing is shared!

The Program

Function A Function B

Your browser

Web Site A Web Site B

